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Abstract
One of the challenges of generating video game levels pro-
cedurally is capturing what in the design of a specific level
makes it fun to play. In this paper, we demonstrate our pre-
liminary work on a system which learns from expertly de-
signed game levels to produce new game levels automati-
cally. We developed a platform for designers to create tile-
based dungeon levels and a level-generating agent which
consumes recordings of design sessions to learn and then
create its own levels. We evaluate the output of our agent
using metrics gathered from a static analysis and a dis-
count usability study using a digital game prototype that
renders the level designs. Our preliminary results suggest
that this system is capable of generating content that emu-
lates the style of the human designer and approaches the
level of fun of human-designed levels.
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Introduction
One of the primary goals of a game designer is to craft
engaging experiences for their players. They may wish to
evoke specific emotions or produce content that is fun and
interesting. Procedural Content Generation (PCG), the al-
gorithmic generation of game content, provides the poten-



tial to lessen the burden on game designers by allowing for
the rapid production of content. Game levels are an entic-
ing prospect for PCG because they are core to the expe-
rience of games. Although it is well-established that PCG
may save time and resources [16], it is difficult to design
generators to produce content that embodies human design
goals.

Although powerful, many "constructive" approaches to PCG
rely on the designers to codify their requirements and con-
straints in the algorithms and parameters of the gener-
ator. Applications of PCG to commercial games are not
widespread [4, 18], and this complexity stands as a barrier
to adoption. Procedural Content Generation via Machine
Learning (PCGML) has emerged as a potential solution
by automating content generation based on learned mod-
els of existing designs [12], but the problem of how best
to capture the creative spark of the designer remains an
open question. In this paper we explore the problem of au-
tomatically generating fun levels based on expert demon-
strations of level creation. We hypothesized that the act of
level creation would intrinsically capture some aspect of the
designer’s goal and style.

Figure 1: A screenshot of the
tile-based level generator used to
produce dungeons and expert
demonstrations. Art assets
courtesy Unity Technologies [15].

We present Dungeon Digger, an automated system for the
generation of dungeon game levels. We chose to focus on
dungeon levels because of their structural complexity and
their ubiquity in roguelike and adventure games like The
Legend of Zelda series. The Dungeon Digger agent learns
to produce levels by observing demonstration data pro-
duced from a custom level generator that we have devel-
oped for creating tile-based level designs. In a single pass,
the agent can produce tilemaps for playable levels that in-
clude level topology, enemies, and items. In order to cap-
ture the innate fun quality of human designs, we apply Ap-
prenticeship Learning via Inverse Reinforcement Learning

(IRL) [1] to extract an overarching design goal without the
need to manually encode constraints. We report the results
of a discount usability study conducted using a digital game
prototype that we developed to allow players to test and
evaluate various samples of human and agent-generated
levels.

Our main contribution is a fully-automated approach to dun-
geon level generation that learns from examples of human
level creation and produces levels that approach the degree
of fun of human-designed content.

Background and Related Work

Fun
For the purposes of this
study, we define fun as the
subjective enjoyment ex-
pressed by players. We used
player-reported fun ratings to
compare the levels evaluated
in our usability study.

Level Style
In this paper, we use holistic
level evaluations to deter-
mine stylistic similarity of
levels (Table 2). Through
visual inspection of agent-
produced levels we also
identified some of the same
design elements (e.g. rooms)
which were combined and
arranged in unique ways
(Figure 2).

PCG of Dungeon Levels
One category of dungeon PCG approaches involves the
use of generative grammars in which replacement rules
are applied to piece together chunks of levels or other rep-
resentative units. Dormans et al. [2] utilized a combina-
tion of graph grammars to create abstract mission graphs
and shape grammars to construct games spaces. Van der
Linden et al. [17] used gameplay grammars to encode de-
sign constraints as grammar rules. Such techniques are
highly customizable and allow encoding of high-level design
goals, but designing grammars and non-terminal chunks is
complex and not easily transferable between games. Our
approach seeks to automate the level generation process
to reduce the burden on designers. Liapis et al. [7] used
a genetic algorithm to implement a level suggestion fea-
ture in their game design tool, Sentient Sketchbook. User
studies showed favorable opinion of this feature, but the fit-
ness function is based on hand-coded design assumptions
whereas our system attempts to infer them from human
demonstrations. Summerville et al. [13] generated dungeon
levels by training a Bayesian Network on topology of The
Legend of Zelda levels. Their approach relied on super-



vised learning using manually annotated levels whereas our
agent learns from unsupervised level creation data.

Inverse Reinforcement Learning (IRL)
IRL, originally described by Ng and Russell [9] inverts the
standard Reinforcement Learning (RL) task. In our work we
utilize Apprenticeship Learning via Inverse Reinforcement
Learning [1], a technique which applies IRL to extract a re-
ward function and policy from observations of an expert’s
behavior in an MDP environment. Apprenticeship learning
has been successfully applied to many domains, including
the training of an agent to play Super Mario Bros. [6] based
on demonstrations of play by human experts. To the best
of our knowledge this is the first time it has been applied to
PCG.

The Dungeon Digger System
In an effort to create fun dungeon level designs, we devel-
oped three primary components for the Dungeon Digger
System: 1) A tile-based level generator for creating levels
and expert demonstrations, 2) an apprenticeship learn-
ing system which learns from the output demonstrations
and automatically creates new level content, and 3) an ad-
venture game prototype which renders human and agent-
generated levels as a platform for evaluation by players.

Tile-Based Level Generator
Developed with the Unity game engine, our custom level
generator (Figure 1) allows a user to produce levels by con-
trolling a "digger" character. A level begins as a 50x50 grid
of blocks. As the digger moves, it clears out paths in a man-
ner similar to the constructive ad hoc agent described by
Shaker et al. [11]. In addition to movement up, down, left,
and right, the digger can also create small, medium, and
large rooms centered around itself and place enemy, trea-
sure, key, locked door, and exit tiles. We require placement

of the exit to be the last action taken in creating a level. An
advantage of this design is that all levels created in the sys-
tem must contain an exit and a path between the start loca-
tion and exit tile, making them inherently playable.

As the user controls the digger to produce their level, we
record the sequence of states visited and actions taken.
Demonstration sequences and tilemaps are written to files
at the conclusion of a level creation session for consump-
tion by the other modules.

Apprenticeship Learning System
In order to train an agent from the expert demonstrations
produced by the level generator, we modeled our domain
in the Brown-UMBC Reinforcement Learning and Planning
(BURLAP) Java library [8].

Reinforcement Learning
Reinforcement learning
(RL) is a machine learn-
ing technique in which an
agent learns behavior by
trying various actions and
discovering their outcomes
in order to maximize a nu-
merical reward [14]. Typically,
the learning problem is de-
fined as a Markov Decision
Process (MDP). An MDP
consists of finite sets of
states and actions, a set of
transition probabilities be-
tween states conditioned
on actions, a reward func-
tion defining the immediate
reward received upon a
transition, and a discount
factor which measures the
importance of future rewards.
Given an MDP, the task of
RL is to recover an optimal
policy π∗ that guides the be-
havior of an agent to produce
the maximum total reward
from a start state.

We read in the demonstration data from our level generator
to produce "episodes" that act as input to the apprentice-
ship learning algorithm and construct an MDP. We next run
BURLAP’s implementation of apprenticeship learning on
our expert demonstration episodes to produce a reward
function which is a linear combination of the discretized tile
counts and "has exit" flag from our state representation. We
augmented the learned reward function by applying an ad-
ditional arbitrarily large reward for reaching a terminal state
to discourage the agent from reaching infinite reward loops
and failing to complete a level. Applying this reward function
to the MDP, we use value iteration to solve for the optimal
policy π∗.

We can produce levels by selecting actions in succession
according to π∗ beginning from the start state until we
reach our end state. A BURLAP visualizer (Figure 3) vi-
sualizes the agent’s actions and output levels. Because
the policy obtained from value iteration is deterministic, we
introduce stochasticity in the generation process by op-



tionally applying one of several "refresh policies". These
policies will trigger the MDP to jump to a new state based
on a probability that increases as the agent takes actions
without refreshing. We have implemented several variations
of refresh policies, including ones that refresh to the start
state, a random state, or a state with the same field of vi-
sion. Another attempts to avoid actions which could lead to
overlapping rooms. The result of these policies is the abil-
ity to create a variety of levels from a single learned policy
(Figure 3).

Adventure Game Prototype

States
The state representation
consists of a parameterizable
N×N field of vision centered
around the agent, the agent’s
distance from the start, and
various features that de-
scribe the level including
counts of enemy, treasure,
door, and empty tiles and a
boolean for the presence of
an exit tile. All continuous
values such as tile counts
are discretized into a small
number of buckets based on
maximum observed values
according to the formula:
discrete(count) =

⌊
count

( maxcount
numbuckets

)

⌋

Actions
Up, Down, Left, Right, Room
(S,M,L), Enemy, Treasure,
Key, Door, Exit. In each state,
we limit the set of possible
actions to those sampled
from the expert demonstra-
tions.

State Transitions:
Transitions from each state
s to state s′ on action a are
based on transition frequen-
cies observed in the training
data as in [6].

We created a digital game prototype in Unity styled after
The Legend of Zelda to allow players to test and evaluate
generated content (Figure 4). In the game, players navi-
gate their character through the dungeon levels, collecting
keys to unlock doors and reach the exit. They can swing
their axe to fend off zombie enemies when they draw near.
Unlike in Zelda, the dungeon is explored as a continuous
space rather than moving between discrete rooms.

Experiments
To test the performance of our system on true "expert" de-
signs, we recreated the first eight dungeons from The Leg-
end of Zelda [10] using our tile-based level designer and
trained an agent on the output demonstration data (e.g. Fig-
ure 5). We collected representative samples of output levels
from separate runs of apprenticeship learning with various
vision parameter assignments and refresh policies.

User Study
To evaluate the level of fun of the generated levels com-
pared to their human inspirations, we performed a discount
usability test on a combination of human and agent lev-
els using our digital game prototype (N = 6, 1 female,
mean age of 30.67). Participants represented a range of

experience with video games: 50% of participants reported
playing video games multiple times per week, while oth-
ers reported less frequent play of a few times per month
or year. After a brief tutorial introducing them to the game
prototype, participants were asked to play a series of six
levels (pictured in Figure 2), pausing between levels to
record their impressions. Each participant played the same
six levels, though the order of levels was randomized for
each session. Two of these levels were our reproductions
of Zelda levels, while the other four were selected from the
aforementioned agent output samples. Participants were
only told that they may be playing human-designed lev-
els, agent-designed levels, or some combination thereof.
The questionnaire we used for evaluation of levels asked
users to rate the level on a Likert scale from 0-4 (0=Not at
all, 4=Extremely) for fun, difficulty, exploration, playability,
and humanness of design. The rating scale and several
questions were adopted from the Game Experience Ques-
tionnaire [5].

Static Level Evaluations
To characterize the human and agent-designed levels, we
compared them using four static evaluation metrics: lin-
earity, leniency, exploration, and density. Linearity charac-
terizes the winding quality of the path from start to finish
and is calculated as 1 divided by the number of changes
in direction following Dijkstra’s shortest path. Leniency is
a measure of how easy it is to score points. We first derive
the level’s score: +1 per treasure, -0.25 per enemy, -1 per
locked door. Leniency is calculated by applying the sigmoid
function 1

1+e−x to the score. Exploration is estimated by
running a flood fill algorithm from the start location until the
exit is reached and determining the percent of traversable
tiles filled, as in [7]. Density is the ratio of enemy, item, and
door tiles to all traversable tiles.



Figure 2: The four agent and two human created levels evaluated
in our user study.

Results

Figure 3: Levels created from the
same learned policy using various
refresh policies. The policy was
trained on demonstrations of
creating eight Zelda levels.

In Table 1 we report the mean scores for each level as well
as the mean results for agent and human levels. Agent 1
and Agent 2 were produced using a vision of 7×7 using the
collision avoidance refresh strategy and no refresh strategy
respectively. Agent 3 was produced using vision of 5×5 and
no refresh strategy. Random was constructed by select-
ing random valid actions to walk through the MDP. Human
1 and Human 2 were reproductions of dungeons 1 and 4
from The Legend of Zelda. The agent combined result con-

User Evaluations

Level Fun Difficulty Exploration Playable Human

Agent 1 2.5 1 3 3.17 2.33
Agent 2 3 2 2.67 3 0.83
Agent 3 2 1 2.17 3 0.5
Random 3.33 2.33 2.83 3.33 2.5
Human 1 3.17 2 2.83 3.5 2.83
Human 2 2.83 1.5 3.17 3.67 1.83

Agent 1&2 2.75 1.5 2.83 3.083 1.583
Human 3 1.75 3 3.583 2.33

Table 1: Mean level scores based on questionnaire data obtained
from our discount usability study.

siders Agent 1 and Agent 2 because they reflect our most
promising results, outperforming the limited vision agent
level in each category. On average, the agent levels tested
below the human levels in each metric. Agent 2 however
received a higher fun rating than Human 2. Although rated
less fun, Agent 1 was convincing enough that on average
users believed it to be more human-designed than Human
2. Another observation is that the level produced by random
actions in the MDP was evaluated as the most fun level in
the group. We believe its high enemy density and chaotic
design in tandem with the play style of the game prototype
may have contributed to this result.

Table 2 presents the values obtained from our static metric
analysis of several levels in the user study. Agent 2 has
a similar static analysis to Human 1. The stochasticity of
the refresh policy in Agent 1 resulted in the production of a
novel design (Figure 2), hence the difference in exploration
from some of its training sources. We note that this lower
exploration and higher leniency may be correlated with its



Level Metrics

Level Linearity Leniency Exploration Density

Agent 1 0.25 0.95 0.47 0.08
Agent 2 0.25 0.005 0.95 0.098
Human 1 0.25 0.08 0.98 0.082
Human 2 0.125 0.998 0.95 0.091

Table 2: Static metric evaluations of select user study levels.

lower fun and difficulty evaluations by users (Table 1). In the
future, we hope to establish a stronger correlation and use
these evaluation metrics to predict player impressions.

Discussion

Figure 4: A screenshot of the
digital game prototype developed
in Unity used to conduct our user
study. Art assets courtesy Unity
Technologies.

Figure 5: Reproduction of a Zelda
dungeon (A) (image sourced from
[3], © Nintendo) in our tile-based
level creator (B).

Although our preliminary results show that automated lev-
els are not yet able to consistently achieve the same level
of fun as human-generated levels, we believe this approach
shows promise as an automation tool. Our state represen-
tation and retrieved reward function are based solely on
observations of the level and make no assumptions of de-
sign goals or constraints, yet we have been able to gener-
ate levels that reflect the style of the human designer and
test positively with players as evidenced by the similar static
evaluations of Agent 2 and Human 1.

In future work we would like to optimize for the metrics
tested in our user study, but we recognize that levels that
do not score as highly are not necessarily any less valu-
able. For example, although Agent 1 received a lower aver-
age fun rating in our user study than the human designed
levels, one user suggested it would make an ideal tutorial
level because of its lower difficulty. Another praised the nov-
elty of its design: "The treasure/key placement to the right
seemed designed to draw you directly to the exit, which had

the opposite effect of making me want to explore the rest of
the level...". Resolving a common complaint about odd tile-
placements (e.g. locked doors with openings directly next
to them) may also improve players’ perception of computer
generated levels.

Although a useful tool for early results, our discount user
study is limited in the level of analysis it can provide. To per-
form a more rigorous analysis we plan to conduct a larger
study to test a greater quantity of level designs. The com-
paratively high performance of the randomly sampled level
suggests that our current game prototype may not be well-
suited to the type of levels under study. Additionally, we
have not yet validated it with professional game designers
to get their impressions on the degree of automation and in-
put style. Our tile-based level creator may be too simplistic
for designers to produce serious work with.

Conclusion
We presented Dungeon Digger, an automated system for
dungeon level generation that utilizes apprenticeship learn-
ing to model the innate design goals of the human designer
that lead to generating fun levels. Through a discount user
study, we discovered that our agent can not only create lev-
els that mimic the style of the expert levels, but can also
produce novel designs. Our analysis showed that our tech-
nique is capable of producing levels that approach the de-
gree of fun of human-designed levels.

As a next step we plan to seek feedback from expert game
designers in order to adjust the level automation and tile-
level creator to fit their workflow and creative goals. This
will help align future development with a long-term goal of
building Dungeon Digger into a plug-and-play tool to assist
designers by automatically providing additional level content
from observing their past creations.
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